Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops | 誠品線上

Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops

作者 Valliappa Lakshmanan ; Sara Robinson ; Michael Munn
出版社 Ingram International Inc
商品描述 Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops:,Thedesignpatternsinthisbookcapturebestpractic

內容簡介

內容簡介 The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly

作者介紹

作者介紹 Valliappa (Lak) Lakshmanan is Global Head for Data Analytics and AI Solutions on Google Cloud. His team builds software solutions for business problems using Google Cloud's data analytics and machine learning products. He founded Google's Advanced Solutions Lab ML Immersion program. Before Google, Lak was a Director of Data Science at Climate Corporation and a Research Scientist at NOAA.Sara Robinson is a Developer Advocate on Google's Cloud Platform team, focusing on machine learning. She inspires developers and data scientists to integrate ML into their applications through demos, online content, and events. Sara has a bachelor's degree from Brandeis University. Before Google, she was a Developer Advocate on the Firebase team.Michael Munn is an ML Solutions Engineer at Google where he works with customers of Google Cloud on helping them design, implement, and deploy machine learning models. He also teaches an ML Immersion Program at the Advanced Solutions Lab. Michael has a PhD in mathematics from the City University of New York. Before joining Google, he worked as a research professor.

商品規格

書名 / Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops
作者 / Valliappa Lakshmanan ; Sara Robinson ; Michael Munn
簡介 / Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops:,Thedesignpatternsinthisbookcapturebestpractic
出版社 / Ingram International Inc
ISBN13 / 9781098115784
ISBN10 /
EAN / 9781098115784
誠品26碼 /
尺寸 / 23.3X17.8X2.1CM
重量(g) / 648.6
尺寸 / 23.3X17.8X2.1CM
頁數 / 408
裝訂 / P:平裝
級別 / N:無
語言 / 3:英文

活動