Python深度學習 | 誠品線上

Python Deep Learning

作者 Valentino Zocca/ Gianmario Spacagna/ Daniel Slater/ Peter Roelants
出版社 聯合發行股份有限公司
商品描述 Python深度學習:隨著普羅大眾對人工智慧的興趣日益濃厚,深度學習也引起了廣泛的關注。每一天都有許多深度學習的演算法被運用在不同的產業中。本書將會為您提供有關該主題

相關類別

內容簡介

內容簡介 隨著普羅大眾對人工智慧的興趣日益濃厚,深度學習也引起了廣泛的關注。每一天都有許多深度學習的演算法被運用在不同的產業中。本書將會為您提供有關該主題的所有實務資訊,包括最佳實作,使用真實世界的案例。您將學習到如何辨識和擷取資訊以便提高預測準確性,並最佳化結果。從快速回顧重要的機器學習觀念開始,本書將使用scikit-learn來介紹深度學習的原理。然後,您也將學習到使用最新的開源函式庫,如Theano、Keras、Google的TensorFlow和H20。讀者可以使用本書當作一個指南,來找出模式辨識的困難之處,縮放數據以便得到更精確的結果,並討論深度學習演算法和技巧。無論您是想深入了解深度學習,還是想要知道如何從這個強大的技術中獲得更多的資訊,您都可以從本書中學到這一切。適用讀者對機器學習觀念具有一些基本認識,對Python程式設計有一些經驗的數據科學從業人員,或是立志成為資料科學家的人。同時也需對微積分和統計學的基本觀念有相當程度的理解。你能夠從本書學習到:●深度學習演算的深入實務認識。●進一步地以Theano、H2O、Keras和TensorFlow來學習深度學習。●了解在許多深度學習實作的兩個最重要的核心技術:自動編碼器和受限玻爾茲曼機。●介紹卷積類神經網路來處理電腦視覺。●了解強化學習來處理棋盤遊戲與電動遊戲。●遞迴類神經網路和長短期記憶網路來做語音辨識。●以深度學習技術建立一個可擴充和生產就緒的異常偵測系統。

作者介紹

作者介紹 ■作者簡介Valentino Zocca 目前是一家大型金融公司的獨立顧問,住在紐約。他利用機器學習與深度學習,開發了許多計量經濟學模型來建立預測模型。在羅馬大學取得數學碩士學位後,再到美國馬里蘭大學深造,並且完成他的數學博士學位,博士論文是研究「symplectic geometry」。取得博士學位後,在英國的University of Warwick待了一學期,再到巴黎進行博士後研究。接著在華盛頓特區的Autometric公司服務,參與許多高科技專案,並在設計、開發一個先進3D地球視覺化軟體的專案中扮演核心的角色。Autometric公司後來被波音公司併購,在波音公司服務期間,開發了許多數學演算法和預測模型,並使用Hadoop完成了許多衛星影像視覺化的程式。他可以說是一位機器學習與深度學習的專家。 並曾在美國人口普査局工作。也以獨立顧問的身分,在美國與義大利工作。並曾經在義大利米蘭與美國紐約主持過機器學習與深度學習的講座。Gianmario Spacagna目前是 Pirelli輪胎公司的資深資料科學家,專門處理IoT感測器資料、遙測資料與聯通載具的應用。主要專長是在替數據產品建立機器學習系統和完整的解決方案。工作中需要與輪胎技師,工程師和業務部門密切合作,以便分析和製定混合動力,物理驅動和數據驅動的汽車模型。Gianmario是Professional Data Science Manifesto一書的共同作者,也是Data Science Milan meetup社群的創辦人。擁有Polytechnic of Turin的資訊碩士學位,曾是斯德哥爾摩的KTH公司,分散式系統的資深軟體工程師。在到Pirelli輪胎公司服務之前,曾在Barclays的零售和商業銀行服務、Cisco擔任網絡安全工作、AgilOne從事市場預測,偶爾也會以個人名義承攬專案。Daniel Slater從11歲開始設計程式,開發軟體遊戲Quake的模組。他的熱情引領他成為電腦遊戲公司的遊戲開發工程師,並且參與Championship Manager這個熱門系列遊戲的開發,後來轉入財務領域,從事高風險、高效能的訊息系統。現職是Skimlinks的大數據工程師,分析線上使用者行為,閒暇時間會訓練AI來打敗電腦遊戲,也曾多次在技術會議上發表關於深度學習與強化學習的演說。部落格是www.danielslater.net,其工作成果也被Google所引用。Peter Roelants擁有魯汶大學的計算機科學碩士學位,專攻人工智慧。致力於將深度學習運用在各個領域,例如光譜成像,語音辨識,文本分析和文件資訊檢索。目前在Onfido工作,是「數據檢索研究團隊」的領導人,專注於官方文件的資料檢索。■譯者簡介劉立民、吳建華、陳開煇

產品目錄

產品目錄 前言第1章:機器學習簡介 什麼是「機器學習」? 不同的「機器學習」方法 第2章:類神經網路 為什麼是類神經網路? 基礎介紹 第3章:深度學習基礎什麼是「深度學習」? 深度學習的應用 GPU與CPU 受歡迎的開源函式庫介紹 第4章:非監督式特徵學習自動編碼器 受限玻爾茲曼機 第5章:影像辨識 人工模型與生物學模型之間的差異 卷積類神經網路的直觀理解與使用理由 卷積層 匯總層 退出 深度學習中的卷積層 Theano中的卷積網路 使用Keras的卷積層來做數字辨識 使用Keras的卷積層來對cifar10做辨識 預訓練 第6章:遞迴類神經網路和語言模型 遞迴類神經網路 語言塑模 語音辨識 第7章:棋盤遊戲的深度學習 早期具有 AI的遊戲 使用極小-極大演算法來給遊戲盤面定值 以Python實作Tic-Tac-Toe遊戲 學習一個估值函數 訓練AI成為圍棋大師 應用上限信賴界線於遊戲樹 蒙地卡羅樹搜索中的深度學習 強化學習的快速回顧 以策略梯度來學習策略函數 AlphaGo中的策略梯度 第8章:電腦遊戲的深度學習 以監督式學習方法處理電腦遊戲 運用基因演算法來玩遊戲 Q學習 Q學習實務 動態遊戲 Atari打磚塊 演員-評論家法 非同步法 以模型為基礎學習 第9章:異常偵測 什麼是「異常偵測」,什麼是「離群值偵測」? 真實世界中的異常偵測應用 受歡迎的淺層機器學習技術 使用「深度自動編碼器」來做「異常偵測」 H2O概觀 範例 第10章:建立一個生產就緒的 入侵偵測系統 什麼是數據產品? 訓練 測試 部署

商品規格

書名 / Python深度學習
作者 / Valentino Zocca Gianmario Spacagna Daniel Slater Peter Roelants
簡介 / Python深度學習:隨著普羅大眾對人工智慧的興趣日益濃厚,深度學習也引起了廣泛的關注。每一天都有許多深度學習的演算法被運用在不同的產業中。本書將會為您提供有關該主題
出版社 / 聯合發行股份有限公司
ISBN13 / 9789864342723
ISBN10 / 986434272X
EAN / 9789864342723
誠品26碼 / 2681538186008
裝訂 / 平裝
頁數 / 408
語言 / 中文 繁體
級別 /
尺寸 / 23X17CM