內容簡介
內容簡介 內容介紹: 有了三個臭皮匠,何必每次堅持找個諸葛亮? 任何人都能運用深度學習(DL)嗎?AutoML(自動化機器學習)已經遍地開花,各大企業諸如 Google、Microsoft、Amazon、IBM、SAS 等都推出了自己的 AutoML 服務,讓使用者不必具備專業領域知識,也能快速打造出自己的 AI 模型。換言之,AutoML 徹底降低了 「AI 落地」的門檻。 AutoML不能取代資料科學家,卻能大大省下你試驗機器學習模型的時間與痛苦。當你的朋友還在興致沖沖算數學時,你說不定早就端出了可投入實用的高效能模型。 而什麼是 AutoKeras?這是一套完全開源的 Python AutoML 套件,以 Tensorflow 2 為基礎、運用創新的『高效神經網路架構搜尋』(ENAS)來實現自動化建模。AutoKeras 對於影像、文字、時間序列或一般結構化資料的預測都提供了內建類別,甚至會加上資料預處理功能,使你只需用短短幾行程式碼便能打造出成效優異的 DL 模型,還不必接觸高深的數學。 就連經驗豐富的專家也能受惠:利用 AutoKeras 快速產生候選模型,好做為進一步改良的參考,並將更多寶貴的時間投注在資料清洗與特徵工程上。 從此向困難、令人困惑的建模過程說拜拜,跨入深度學習的門檻從未如此之低;有了 AutoKeras,任何人都能駕馭 AI 的威力來解決真實世界的問題。 本書特色: ★ 免懂數學免瞎忙!不必再被迫學數學,就能輕鬆將 AI 運用在真實世界 ★ 什麼是神經網路和深度學習?何謂 CNN 與 RNN?用淺顯易懂的方式理解其運作原理 ★ 只要寫短短幾行 Python 程式,就能打造出強效深度學習模型,省時省力又好用 ★ 無須透過複雜的 Keras API 就能使用諸如 ResNet、Xception、EfficientNet、Transformer、BERT、LStM、GRU 等知名模型架構 ★ 提供了使用真實資料集的豐富實作範例,從圖像、文字、時間序列到一般結構化資料的預測一應俱全 ★ 運用內建的 AutoModel 類別針對多模態 (multi-model) 資料建立多任務 (multi-task) 自訂模型 ★ 利用 TensorBoard 或 ClearML 將你的模型訓練過程圖形化,更容易比較訓練成效和分享 ★ 附 notebook py 範例程式、Google Colab 及本機安裝教學,包括如何安裝 CUDA GPU 支援 ★ 加值贈送:運用 2021 年新推出的輕量級 AutoML 套件 Flaml 來預測結構化資料!
產品目錄
產品目錄 目錄: Chapter 1 AutoML 入門 Chapter 2 開始使用 AutoKeras ──第一個自動化 DL 範例 Chapter 3 了解 AutoKeras 對於自動化 DL 流程的資料預處理 Chapter 4 運用 AutoKeras 進行圖像的分類與迴歸 Chapter 5 運用 AutoKeras 進行文本、情感、主題的分類與迴歸 Chapter 6 運用 AutoKeras 進行結構化資料的分類與迴歸 Chapter 7 運用 AutoKeras 進行時間序列預測 Chapter 8 自訂 AutoModel 複合模型並處理多重任務 Chapter 9 AutoKeras 模型的匯出與訓練過程視覺化 Bonus (電子書) 運用輕量級 AutoML 套件 Flaml 於結構化資料預測任務